Home
Class 12
MATHS
|[1/c,1/c,-(a+b)/c^2],[-(b+c)/c^2,1/a,1/...

`|[1/c,1/c,-(a+b)/c^2],[-(b+c)/c^2,1/a,1/a],[(-b(b+c))/(a^2c),(a+2b+c)/(ac),(-b(a+b))/(ac^2)]|` is

A

dependent on `a,b,c`

B

dependent on `a`

C

dependent on `b`

D

independent on `a,b` and `c`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Multiplying `C_(1)` by `a`, `C_(2)` by `b` and `C_(3)` by `c`, we obtain
`Delta=(1)/(abc)|{:((a)/(c),(b)/(c),-(a+b)/(c)),(-(b+c)/(a),(b)/(a),(c)/(a)),(-(b(b+c))/(ac),(b(a+2b+c))/(ac),-(b(a+b))/(ac)):}|`
Applying `C_(1)toC_(1)+C_(2)+C_(3)` we get
`Delta=(1)/(abc)|{:(0,(b)/(c),-(a+b)/(c)),(0,(b)/(a),(c)/(a)),(0,(b(a+2b+c))/(ac),-(b(a+b))/(ac)):}|`
This shows that `Delta` is independent of `a`, `b` and `c`.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a ,b ,c and a^prime ,b^(prime),c ' from the origin, then a. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0 b. 1/(a^2)-1/(b^2)-1/(c^2)+1/(a^('2))-1/(b^('2))-1/(c^('2))=0 c. 1/(a^2)+1/(b^2)+1/(c^2)-1/(a^('2))-1/(b^('2))-1/(c^('2))=0 d. 1/(a^2)+1/(b^2)+1/(c^2)+1/(a^('2))+1/(b^('2))+1/(c^('2))=0

prove that |{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}| |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Show that |(b+c,a,a^(2)),(c+a,b,b^(2)),(a+b,c,c^(2))|=(a+b+c)(a-b)(b-c)(c-a)

Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A

If g(x)=(f(x))/((x-a)(x-b)(x-c)) ,where f(x) is a polynomial of degree <3 , then intg(x)dx=|[1,a,f(a)log|x-a|],[1,b,f(b)log|x-b|],[1,c,f(c)log|x-c|]|-:|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|+k (dg(x))/(dx)=|[1,a,-f(a)(x-a)^(-2)],[1,b,-f(b)(x-b)^(-2)],[1,c,-f(c)(x-c)^(-2)]|:-|[1,a,a^2],[1,b,b^2],[1,c,c^2]|

If =|[a b c, b^2c,c^2b],[ a b c,c^2a, c a^2],[a b c, a^2b,b^2a]|=0,(a ,b ,c in R) and are all different and nonzero), then prove that a+b+c=0.

If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2