Home
Class 12
MATHS
Let Delta1=[[ap^2,2ap,1],[aq^2,2aq,1],[a...

Let `Delta_1=[[ap^2,2ap,1],[aq^2,2aq,1],[ar^2,2ar,1]]` and `Delta_2=[[apq,a(p+q),1],[aqr,a(q+r),1],[arp,a(r+p),1]]` then

A

`Delta_(1)=Delta_(2)`

B

`Delta_(2)=2Delta_(1)`

C

`Delta_(1)=2Delta_(2)`

D

`Delta_(1)+2Delta_(2)=0`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `Delta_(1)=|{:(ap^(2),2ap,1),(aq^(2),2aq,1),(ar^(2),2ar,1):}|`
`=2a^(2)|{:(p^(2),p,1),(q^(2),q,1),(r^(2),r,1):}|`
`=-2a^(2)(p-q)(q-r)(r-p)`
`Delta_(2)=|{:(apq,a(p+q),1),(aqr,a(q+r),1),(arp,a(r+p),1):}|`
`=a^(2)|{:(pq,(p+q),1),(qr,(q+r),1),(rp,(r+p),1):}|`
`=a^(2)|{:(pq-qr,p-r,0),(qr-rp,q-p,0),(rp,(r+p),1):}|(R_(1)toR_(1)-R_(2),R_(2)toR_(2)-R_(3))`
`=a^(2)(p-q)(r-p)|{:(-q,-1,0),(-r,-1,0),(rp,(r+p),1):}|`
`=a^(2)(p-q)(r-p)|{:(-q+r,0,0),(-r,-1,0),(rp,(r+p),1):}|`
`=a^(2)(p-q)(r-p)(q-r)`
`impliesDelta_(1)+2Delta_(2)=0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),…. are in A.P., then a_(p),a_(q),q_(r) are in A.P. if p,q,r are in

Area of triangle whose vertices are (a,a^2),(b,b^2),(c,c^2) is 1/2 . and area of another triangle whose vertices are (p,p^2),(q,q^2) and (r,r^2) is 4, then the value of |((1+ap)^2,(1+bp)^2,(1+cp)^2),((1+aq)^2,(1+bp)^2,(1+cq)^2),((1+ar)^2,(1+br)^2,(1+cr)^2)| is (A) 2 (B) 4 (C) 8 (D) 16

Without expanding at any stage, prove that the value of each of the following determinants is zero. (1) |[0,p-q,p-r],[q-p,0,q-r],[r-p,r-q,0]| (2) |[41,1,5],[79,7,9],[29,5,3]| (3) |[1,w,w^2],[w,w^2,1],[w^2,1,w]| , where w is cube root of unity

Let P=[(1,2,1),(0,1,-1),(3,1,1)] . If the product PQ has inverse R=[(-1,0,1),(1,1,3),(2,0,2)] then Q^(-1) equals

In Delta ABC , I is the incentre, Area of DeltaIBC, DeltaIAC and DeltaIAB are, respectively, Delta_(1), Delta_(2) and Delta_(3) . If the values of Delta_(1), Delta_(2) and Delta_(3) are in A.P., then the altitudes of the DeltaABC are in

If Delta_r =|[2^(r-1) ,2.3^(r-1), 4.5^(r-1)],[alpha,beta,gamma],[2^n-1, 3^n-1, 5^n-1]| , then find the value of Delta

The value of |[yz, z x,x y],[ p,2q,3r],[1, 1, 1]|,w h e r ex ,y ,z are respectively, pth, (2q) th, and (3r) th terms of an H.P. is a. -1 b. 0 c. 1 d. none of these

The vertices of a triangle are (p q ,1/(p q)),(q r ,1/(q r)), and (r q ,1/(r p)), where p ,q and r are the roots of the equation y^3-3y^2+6y+1=0 . The coordinates of its centroid are (1,2) (b) 2,-1) (1,-1) (d) 2,3)

Prove that |A| = | ((q+r)^2 ,p^2,p^2),(q^2 ,(r + p)^2, q^2),(r^2 , r^2 , (p+q)^2)| = 2pqr(p+q+r)^3