Home
Class 12
MATHS
The value of |{:(x^(2)+y^(2),ax+by,x+y),...

The value of `|{:(x^(2)+y^(2),ax+by,x+y),(ax+by,a^(2)+b^(2),a+b),(x+y,a+b,2):}|` depends on

A

`a`

B

`b`

C

`x`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `Delta=|{:(x,y,0),(a,b,0),(1,1,0):}|*|{:(x,y,0),(a,b,0),(1,1,0):}|=0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c ,d ,e , and f are in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

The solution of (x^(2)-ay)dx=(ax-y^(2))dy is

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. The value of (a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c) is

Solve: (a - b )x + (a + b)y = a^(2) - 2ab - b^(2) and (a + b) (x + y) = a^(2) + b^(2)

If u=ax+by+cz , v=ay+bz+cx , w=ax+bx+cy , then the value of |{:(a,b,c),(b,c,a),(c,a,b):}|xx|{:(x,y,z),(y,z,x),(z,x,y):}| is

Suppose f(x) is a function satisfying the following conditions : (i) f(0)=2,f(1)=1 (ii) f has a minimum value at x=5//2 (iii) for all x,f (x) = |{:(2ax,,2ax-1,,2ax+b+1),(b,,b+1,,-1),(2(ax+b),,2ax+2b+1,,2ax+b):}| Range of f(x) is