Home
Class 12
MATHS
If f(x), h(x) are polynomials of degree ...

If `f(x), h(x)` are polynomials of degree 4 and `|(f(x), g(x),h(x)),(a, b, c),(p,q,r)|``=mx^4+nx^3+rx^2+sx+r` be an identity in x, then `|(f''(0) - f''(0),g''(0) - g''(0),h''(0) -h''(0)),(a,b,c),(p,q,r)|` is

A

`2(3n-r)`

B

`2(2n-3r)`

C

`3(n-2r)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Differntiating given equation w.r.t.x, we get
`|{:(f'(x),g'(x),h'(x)),(a,b,c),(p,q,r):}|=4mx^(3)+3nx^(2)+2rx+5`...........`(1)`
Again differentiating w.r.t.x, we get
`|{:(f''(x),g''(x),h''(x)),(a,b,c),(p,q,r):}|=12mx^(2)+6nx+2x`...........`(2)`
Again differentiating w.r.t.x, we get
`|{:(f'''(x),g'''(x),h'''(x)),(a,b,c),(p,q,r):}|=24mx+6n`...........`(3)`
Putting `x=0` in `(2)`, we get
`2r=`|{:(f''(0),g''(0),h''(0)),(a,b,c),(p,q,r):}|`............`(4)`
Putting `x=0` in `(3)`, we get
`6n=|{:(f'''(0),g'''(0),h'''(0)),(a,b,c),(p,q,r):}|`.............`(5)`
From `(5)` and `(4)`, we get
`|{:(f'''(0)-f''(0),g'''(0)-g''(0),h'''(0)-h''(0)),(a,b,c),(p,q,r):}|=2(3n-r)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If find g are polynomials of derrees m and n respectively, and if h(x) = (f^@ g ) (x), then the degree of h is

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f'(x)g'(x h '(x)f' '(x)g' '(x h ' '(x)| is a constant polynomial.

If y=|{:(f(x),g(x),h(x)),(l,m,n),(a,b,c):}| , prove that (dy)/(dx)=|{:(f'(x),g'(x),h'(x)),(l,m,n),(a,b,c):}| .

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If g(x) = (x^2 + 2x +3) f(x) and f(0) = 5 and underset( x to 0) (lim) (f(x) -5)/(x) =4 then g'(0) is….......... .

If f(x)=2x+3 , g(x)=1-2x and h(x)=3x. Prove that f o(g o h) = (f o g ) o h

If f(x)=2x+3, g(x) = 1-2x and h(x)=3x . Prove that f o (g o h) = (f o g) o h