Home
Class 12
MATHS
If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x...

If `f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]|` then coefficient of `x` in `f(x)` is

A

`-4`

B

`-2`

C

`-6`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Note that `Delta(x)` is a polynomial of degree at most `6` in `x`. If `Delta(x)=a_(0)+a_(1)x+a_(2)x^(2)+…+a_(6)x^(6)`, then `Delta'(x)=a_(1)+2a_(2)x+……+6a_(6)x^(5)`
`impliesa_(1)=Delta'(0)`,
Now,
`Delta'(x)=|{:(1,(x-1)^(2),x^(3)),(1,x^(2),(x+1)^(3)),(1,(x+1)^(2),(x+2)^(3)):}|+|{:(x-2,2(x-1),x^(3)),(x-1,2x,(x+1)^(3)),(x,2(x+1),(x+2)^(3)):}|+|{:(x-2,(x-1)^(2),3x^(2)),(x-1,x^(2),3(x+1)^(2)),(x,(x+1)^(2),3(x+2)^(2)):}|`
`impliesDelta'(0)=|{:(1,1,0),(1,0,1),(1,1,8):}|+|{:(-2,-2,0),(-1,0,1),(0,2,8):}|+|{:(-2,1,0),(-1,0,3),(0,1,12):}|`
`=-8-12+18=-2`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is

If f(x)=1-x+x^2-x^3+...+x^(15)+x^(16)-x^(17) , then the coefficient of x^2inf(x-1) is 826 b. 816 c. 822 d. none of these

if f(x) = (x-1)/(x+1) the f(2x ) is

If f(x)= |{:(1,,x,,x+1),(2x,,x(x-1),,(x+1)x),(3x(x-1),,x(x-1)(x-2),,(x+1)x(x-1)):}| then the value of f(500) "_____"

Consider the polynomial fucntion f(x) = |{:((1+x)^(2),,(1+2x)^(b),,1),(1,,(1+x)^(a),,(1+2x)^(b)),((1+2x)^(b),,1,,(1+x)^(a)):}| a,b being positive integers. the coefficient of x in f(x) is

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

If f(x)= |1x x+1 2x x(x-1)(x+1) x3 x(x-1) x(x-1)(x-2) (x+1)x(x-1)| then f(500) is equal to 0 b. 1 c. 500 d. -500

Let f(x+(1)/(x) ) =x^2 +(1)/(x^2) , x ne 0, then f(x) =?

If f(x) = sin−1 (2x/1+x^2θ), then f' (√3) is

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is