Home
Class 12
MATHS
Find all values of lambda for which the ...

Find all values of `lambda` for which the `(lambda-1)x+(3lambda+1)y+2lambdaz=0(lambda-1)x+(4lambda-2)y+(lambda+3)z=0 2x+(3lambda+1)y+3(lambda-1)z=0` possess non-trivial solution and find the ratios `x:y:z,` where `lambda` has the smallest of these value.

A

`3 : 2 :1`

B

`3 : 3 : 2`

C

`1 : 3 : 1`

D

`1 : 1 : 1`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `|{:(lambda-1,3lamda+1,2lambda),(lambda-1,4lambda-2,lambda+3),(2,3lambda+1,3(lambda-1)):}|=0`
`implieslambda=0` or `3`
If `lambda=0`, the equations become
`-x+y=0`,
`-x-2y+3z=0` and
`2x+y-3z=0`,
`:. (x)/(6-3)=(y)/(6-3)=(z)/(-1+4)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

The set of all values of lambda for which the system of linear equations x - 2y - 2z = lambdax x + 2y + z = lambday -x -y = lambdaz has a non-trivial solution

Find the range of values of lambda for which the point (lambda,-1) is exterior to both the parabolas y^2=|x|dot

The value of lambda for which the lines 3x + 4y=5, 2x+3y=4 and lambda x+4y=6 meet at a point is

If the rank of the matrix [(lambda,-1,0),(0, lambda,-1),(-1,0,lambda)] is 2, then find lambda .

the value of lambda for which the line 2x-8/3lambday=-3 is a normal to the conic x^2+y^2/4=1 is:

If lambda = -2, determine the value of |(0,2lambda,1),(lambda^(2),0,3lambda^(2)+1),(-1,6lambda-1,0)| .

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

Find the value of lambda if the points A(-1, 4, -3) B(3, lambda , - 5), C (-3 ,8,-5) D(-3, 2, 1) are coplanar.

Determine the values of lambda for which the following system of equations x+y+3z=0,4x+3y+ lambda z=0, 2x+y+2z=0 has (i) a unique solution (ii) a non-trivial solution.