Home
Class 12
MATHS
Find the possible values of sqrt(|x|-2) ...

Find the possible values of `sqrt(|x|-2)` (ii) `sqrt(3-|x-1|)` (iii) `sqrt(4-sqrt(x^2))`

Text Solution

Verified by Experts

(i) `sqrt(|x|-2) `
We know that square roots are defined for non-negative values only.
It implies that we must have ` |x|-2 ge 0`. Thus,
`sqrt(|x|-2) ge 0`
(ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| ge 0`
But the maximum value of `3-|x-1|` is 3, when `|x-1|` is 0.
Hence, for `sqrt(3-|x-1|)` to get defined, ` 0 le 3-|x-1|le 3`.
Thus,
`sqrt(3-|x-1|) in [0, sqrt(3)]`
Alternatively, ` |x-1| ge 0`
`implies -|x-1| le 0`
`implies 3-|x-1| le 3`
But for `sqrt(3-|x-1|)` to get defined, we must have
`0 le 3 -|x-1| le3`
`implies 0 le sqrt(3-|x-1|) le sqrt(3)`
(iii) `sqrt(4-sqrt(x^(2)))=sqrt(4-|x|)`
`|x| ge 0`
`implies -|x| le 0`
`implies4-|x| le 4`
But for `sqrt(4-|x|)` to get defined `0 le 4 -|x| le 4`
` :. 0 le sqrt(4-|x|) le 2`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.1|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.2|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise JEE Previous Year|12 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(x+3)-sqrt(x-4))

Find the possible values of sin^(-1) (1 - x) + cos^(-1) sqrt(x -2)

Find all the possible the value of the following expression dot sqrt(x^2-4) (ii) sqrt(9-x^2) (iii) sqrt(x^2-2x+10)

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

(sqrt(x)+(1)/(sqrt(x)))^(2)

Find the integrals of the following : 1/(sqrt((2+x)^2-1)) (ii) 1/(sqrt(x^2-4x+5)) (iii) 1/sqrt(9+8x-x^2)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

Find the value of discriminant. sqrt(2)x^(2)+4x+2sqrt(2)=0

Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .

Integrate the following functions with respect to x . (i) sqrt(9-(2x+5)^2) (ii) sqrt(81+(2x+1)^2) (iii) sqrt((x+1)^2-4)