Home
Class 12
MATHS
Find the value of x for which function a...

Find the value of `x` for which function are identical. `f(x)=cosxa n dg(x)=1/(sqrt(1+tan^2x))`

Text Solution

Verified by Experts

`f(x)=cos x` has domain R and range `[-1,1]`
`g(x)=(1)/(sqrt(1+tan^(2)x))=(1)/(sqrt(sec^(2)x))=|cosx|,`
has domain `R-{(2n+1)pi//2, n in Z` as `tan x` is not defined for `x=(2n+1)pi//2, n in Z`
Also range of `g(x)=|cosx|` is `[0,1]`
Hence f(x) and g(x) are identical if x lies in first and fourth quadrant.
`implies x in underset(n in Z)(cup)(-(pi)/(2)+2n pi,(pi)/(2)+2n pi)`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.1|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.2|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise JEE Previous Year|12 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of x for which function are identical. f(x)=xa n dg(x)=1/(1//x)

Find the value of x for which function are identical. f(x)=(sqrt(9-x^2))/(sqrt(x-2))a n dg(x)=sqrt((9-x^2)/(x-2))

Find the value of x for which function are identical. f(x)=tan^(-1)x+tan^(-1)1/x a n dg(x)=sin^(-1)x+cos^(-1)x

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

Find the real values of x for which the function f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x) is defined

Which of the following functions are identical? f(x)=1nx^2a n dg(x)=21nx f(x)=(log)_x ea n dg(x)=1/((log)_e x) f(x)="sin"(cos^(-1)x)a n dg(x)="cos"(sin^(-1)x) non eoft h e s e

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Column I: Function, Column II: Value of x for which both the functions in any option of column I are identical f(x)=tan^(-1)((2x)/(1-x^2)),g(x)=2tan^(-1)x , p. x in {-1,1} f(x)=(log)_(x2)25a n dg(x)=(log)_x5 , q. x in (-1,1) f(x)=sec^(-1)x+cos e c^(-1)x ,g(x)=sin^(-1)x+cos^(-1)x , r. x in (0,1)

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x