Home
Class 12
MATHS
Let f(x)=x+f(x-1)forAAx in RdotIff(0)=1...

Let `f(x)=x+f(x-1)forAAx in RdotIff(0)=1,fin df(100)dot`

Text Solution

Verified by Experts

Given `f(x)=x+f(x-1) " and " f(0)=1`
Put `x=1`. Then,
`f(1)=1+f(0)=2`
Put `x=2`. Then,
`f(2)=2+f(1)=4`
Put `x=3`. Then,
`f(3)=3+f(2)=7`
Thus, `f(0),f(1),f(2), …" form a series " 1,2,4,7, …. `
Let `S=1+2+4+7+ … +f(n-1)`
`S=1+2+4+ ... +f(n-2)+f(n-1)`
Subtracting , we get
`0=(1+1+2+3+...+n" terms")-f(n-1)`
` :. f(n-1)=(n(n+1))/(2)`
` :. f(100)=5051`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.1|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.2|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise JEE Previous Year|12 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f: RvecR be a function satisfying condition f(x+y^3)=f(x)+[f(y)]^3 for all x ,y in Rdot If f^(prime)(0)geq0, find f(10)dot

If f(x) is a polynomial function satisfying f(x)dotf(1/x)=f(x)+f(1/x) and f(4)=65 ,t h e nfin df(6)dot

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

Let g(x)=f(logx)+f(2-logx)a n df^(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dxdot

Let g(x)=2f(x/2)+f(2-x)a n df^('')(x)<0AAx in (0,2)dot Then g(x) increases in (a) (1/2,2) (b) (4/3,2) (c) (0,2) (d) (0,4/3)

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

Let g(x)=f(x)+f(1-x) and f "(x)>0AAx in (0,1)dot Find the intervals of increase and decrease of g(x)dot

CENGAGE-RELATIONS AND FUNCTIONS-Examples
  1. Find the inverse of the function f:[-(pi)/(2)-"tan"^(1)(3)/(2),(pi)/...

    Text Solution

    |

  2. If f(x)=3x-2a n d(gof)^(-1)(x)=x-2, then find the function g(x)dot

    Text Solution

    |

  3. Let f(x)=x+f(x-1)forAAx in RdotIff(0)=1,fin df(100)dot

    Text Solution

    |

  4. The function f(x) is defined for all real x. If f(a+b)=f(ab) AA a " a...

    Text Solution

    |

  5. Let a function f(x)s a t i sfi e sf(x)+f(2x)+f(2-x)+f(1+x)=AAx in Rdo...

    Text Solution

    |

  6. Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all po...

    Text Solution

    |

  7. If f(x) is a polynomial function satisfying f(x)dotf(1/x)=f(x)+f(1/x) ...

    Text Solution

    |

  8. Let f(x)=(9^x)/(9^x+3) . Show f(x)+f(1-x)=1 and, hence, evaluate. f(1/...

    Text Solution

    |

  9. Consider a real-valued function f(x) satisfying 2f(x y)=(f(x))^y+(f(y)...

    Text Solution

    |

  10. Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then...

    Text Solution

    |

  11. If f: RvecR is an odd function such that f(1+x)=1+f(x) and x^2f(1...

    Text Solution

    |

  12. Let f: R^+vecR be a function which satisfies f(x)dotf(y)=f(x y)+2(1/x+...

    Text Solution

    |

  13. A continuous function f(x)onRvecsatisfies the relation f(x)+f(2x+y)+5x...

    Text Solution

    |

  14. If for all real values of ua n dv ,2f(u)cosv=(u+v)+f(u-v), prove that ...

    Text Solution

    |

  15. Prove that f(x)gi v e nb yf(x+y)=f(x)+f(y)AAx in R is an odd function...

    Text Solution

    |

  16. If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that ...

    Text Solution

    |

  17. Let f(x) be periodic and k be a positive real number such that f(x+k)+...

    Text Solution

    |

  18. If f(x) satisfies the relation f(x)+f(x+4)=f(x+2)+f(x+6) for allx , th...

    Text Solution

    |

  19. An odd function is symmetric about the vertical line x=a ,(a >0),a n d...

    Text Solution

    |

  20. Check whether the function defined by f(x+lambda)=1+sqrt(2f(x)-f^2(x))...

    Text Solution

    |