Home
Class 12
MATHS
Find the range of f(x)=(2sin^2x+2sinx+3)...

Find the range of `f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)`

Text Solution

Verified by Experts

The correct Answer is:
[7/3, 10/3]

`f(x)=(2sin^(2)x+2sinx+3)/(sin^(2)x+sinx+1)`
`=2+(1)/((sinx+(1)/(2))^(2)+(3)/(4))`
`f(x)_(min.)=2+(1)/((9)/(4)+(3)/(4))=(7)/(3)`
`f(x)_(max.)=2+((1)/(3//4))=(10)/(3)`
Hence, range is `[(7)/(3),(10)/(3)]`.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.7|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.8|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.5|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sin^2x-3sinx+2

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x) =8/(sinx+3)

Find the rang of f(x)=sqrt(sin^2x-6sinx+9)+3

2sin^2x-7sinx +3=0

Find the range of f(x)=1/((cosx-3)^2+(sinx+4)^2)

Find the range of f(x)=1/(1-3sqrt(1-sin^2x))

Find the domain of f(x)=(1)/(1-2sinx)

int(2sinx)/(3+sin2x)\ dx

Find the range of f(x) = (sinx)/(x)+(x)/(tanx) in (0,(pi)/(2))