Home
Class 12
MATHS
Find the domain of the function : f(x)=s...

Find the domain of the function : `f(x)=sin^(-1)((log)_2x)`

Text Solution

Verified by Experts

The correct Answer is:
`[1//2,2]`

`f(x)=sin^(-1)(log_(2)x)`
Since the domain of `sin^(-1)x " is " [-1,1],f(x)=sin^(-1)(log_(2)x)` is defined if
`-1 le log_(2)x le 1`
or ` 2^(-1) le x le 2^(1)`
or `(1)/(2) le x le 2`
or domain`=[(1)/(2),2]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.7|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

The domain of the function f(x)=sin^(-1){(log)_2(x^2)/2} is given by__

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

Find the domain of the function : f(x)=sqrt(((log)_(0. 3)|x-2|)/(|x|))

Find the domain of the function: f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

Find the domain of the following functions f(x)=sin^(-1)(2x-3)

Find the domain of the function: f(x)=cos^(-1)(1+3x+2x^2)