Home
Class 12
MATHS
Find the domain of the function : f(x)=3...

Find the domain of the function : `f(x)=3/(4-x^2)+(log)_(10)(x^3-x)`

Text Solution

Verified by Experts

The correct Answer is:
`(-1,0) cup (1,2) cup (2,oo)`

`f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x)`
`f` is defined when
`x ne +-2 " and " x^(3) -x gt 0`
or `x ne +-2 " and "x(x^(2)-1) gt 0`
or `x ne +-2, x in (-1,0) cup (1,oo)`
or `x in (-1,0) cup (1,2) cup (2,oo)`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.7|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

The domain of the definition of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x) is

Find the domain of the function : f(x)=(log)_((x-4))(x^2-11 x+24)

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}

Domain of definitation of the function f(X ) = (3)/(4-x^2) + log _(10) (x^3 -x) is

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

Find the domain of the function : f(x)=sqrt(((log)_(0. 3)|x-2|)/(|x|))

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)