Home
Class 12
MATHS
Find the domain of the function : f(x)=s...

Find the domain of the function : `f(x)=sqrt(((log)_(0. 2)|x-2|)/(|x|))`

Text Solution

Verified by Experts

The correct Answer is:
`[1,2) cup (2,3]`

`f(x)=sqrt((log_(0.3)|x-2|)/(|x|))." Here " |x| gt 0 AA x in R-{0} " (1)" `
Therefore, for `f(x)` to get defined,
`log_(0.3)|x-2| ge 0`
or ` 0 lt |x-2| le 1`
or ` |x-2| le 1 " and " x ne 2`
or ` -1 le x-2 le 1 " and " x ne 2`
or `1 le x le 3 " and " x ne 2`
or `x in [1,2) cup (2,3]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.7|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function : f(x)=sqrt(((log)_(0. 3)|x-2|)/(|x|))

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}

Let x in (0,pi/2)dot Then find the domain of the function f(x)=1/sqrt((-(log)_(sinx)tanx))

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function: f(x)=sqrt(sec^(-1)((2-|x|)/4))

Find the domain of the function: f(x)=(sin^(-1)x)/x

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

Find the domain of the function : f(x)=(log)_((x-4))(x^2-11 x+24)