Home
Class 12
MATHS
Find the value of x in [-pi,pi] for whic...

Find the value of `x` in `[-pi,pi]` for which `f(x)=sqrt((log)_2(4sin^2x-2sqrt(3)sinx-2sinx+sqrt(3)+1))` is defined.

Text Solution

Verified by Experts

The correct Answer is:
`x in [-pi,(pi)/(6)] cup [(pi)/(3),(2pi)/(3)] cup [(5pi)/(6),pi]`

`f(x)=sqrt(log_(2)(4sin^(2)x-2sqrt(3)sinx-2sinx+sqrt(3)+1))` is defined if
`log_(2)(4sin^(2)x-2sqrt(3)sinx-2sinx+sqrt(3)+1) ge 0`
or `4sin^(2)x-2sinx(sqrt(3)+1)+sqrt(3)+1 ge 1`
or ` sin^(2)x-sinx ((sqrt(3))/(2)+(1)/(2)) +(sqrt(3))/(4) ge 0`
or ` (sinx-(sqrt(3))/(2)))(sinx-(1)/(2)) ge 0`
i.e., `-1 le sinx le (1)/(2) " or " (sqrt(3))/(2) le sinx le 1`
or `x in [-pi,(pi)/(6)] cup [(pi)/(3),(2pi)/(3)] cup [(5pi)/(6),pi]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.7|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

Find the range of f(x)=(log)_2(((sinx-cosx)+3sqrt(2))/(sqrt(2)))

Find the range of f(x)=sin^2x-3sinx+2

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

Find the real values of x for which the function f(x) = cos^(-1) sqrt(x^(2) + 3 x + 1) + cos^(-1) sqrt(x^(2) + 3x) is defined

Find the value of sin (pi/6 - sin^(-1) ((-sqrt(3))/2))

Find the domain of f(x)=sqrt(sinx)+sqrt(16-x^2)

Find the rang of f(x)=sqrt(sin^2x-6sinx+9)+3