Home
Class 12
MATHS
If the domain of y=f(x)i s[-3,2], then f...

If the domain of `y=f(x)i s[-3,2],` then find the domain of `g(x)=f(|[x]|),w h e re[]` denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
[-2, 3)

Here, `f(x)` is defined for `x in [-3,2].`
For `g(x)=f(|[x]|)` to be defined, we must have
`-3 le |[x]| le 2`
or `0le |[x]| le 2 " " ["As" |x| ge 0 " for all " x]`
or ` -2 le [x] le 2 " " ["As " |x| le a implies-a le x le a]`
or `-2 le x lt 3 " " ` [By the definition of greatest integral function]
Hence, domain of `g(x)` is `[-2,3)`.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.11|7 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[x] denotes the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Find the domain and range of f(x)=sin^(-1)[x]w h e r[] represents the greatest function).

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function

If domain of f(x) is [1, 3], then the domain of f(log_(2)(x^(2)+3x-2)) is