Home
Class 12
MATHS
f(x)={(log(e)x",",0lt x lt 1),(x^(2)-1 "...

`f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):}` and `g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):}`.
Then find `g(f(x)).`

Text Solution

Verified by Experts

The correct Answer is:
`g(f(x))={(1+"In "x",",0lt x lt 1),(x^(2)",",1 le x lt sqrt(3)),((x^(2)-1)^(2)-1 ",",x ge sqrt(3)):}`

`f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):}` and `g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):}`
`g(f(x))={(f(x)+1",",f(x) lt 2),((f(x))^(2)-1 ",",f(x) ge 2):}`
`={(log_(e)x+1",",log_(e)x lt 2","0lt x lt 1),(x^(2)-1+1",",x^(2)-1 lt 2","x ge 1),((log_(e)x)^(2)-1",",log_(e)x ge 2","0lt x lt 1),((x^(2)-1)^(2)-1 ",",x^(2)-1 ge 2"," x ge 1):}`
`={(log_(e)x+1",", x lt e^(2)","0lt x lt 1),(x^(2)",",-sqrt(3)lt x lt sqrt(3)","x ge 1),((log_(e)x)^(2)-1",",x ge e^(2)","0lt x lt 1),((x^(2)-1)^(2)-1 ",",x le -sqrt(3) " or "x ge sqrt(3)"," x ge 1):}`
`={(log_(e)x+1",",0lt x lt 1),(x^(2)",",1 le x lt sqrt(3)),((x^(2)-1)^(2)-1 ",",x ge sqrt(3)):}`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.11|7 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The domain of the function f(g(x)) is

If the function f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} then the number of roots of the equation f(g(x))=2

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

If f(x) = {{:(x-5, "if" , x le 1),(4x^2-9, "if", 1 lt x lt 2),(3x+4 ,"if", x ge 2):} , then the right hand derivative of f(x) at x=2 is…........... .

Let f(x)=f_1(x)-2f_2 (x) , where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is