Home
Class 12
MATHS
The period of the function f(x)=(6x+7)+c...

The period of the function `f(x)=(6x+7)+cospix-6x ,` where `[dot]` denotes the greatest integer function is: 3 (b) 2`pi` (c) 2 (d) none of these

A

3

B

`2pi`

C

2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=[6x+7]+cos pi x -6x`
`=[6x] +7+cos pi x -6x`
`=7+cos pi x -{6x}`
`{6x}` has period `1//6 and cos pi x` has period 2. Then, Period of `f(x) =LCM " of " 2 " and " 1//6 =2`
Hence, the period is 2.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.15|8 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Prove that int_(-pi/2)^(2pi)[cot^(-1)x]dx ,where [dot] denotes the greatest integer function.

T h ev a l u eofint_(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the greatest integer function, is 1 (b) 1//2 (c) 2 (d) none of these

Evaluate int_(2)^(5) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(0)^(1.5) x[x^2] dx , where [.] denotes the greatest integer function

The range of f(x)=[|sin x|+|cosx"|""]"dot Where [.] denotes the greatest integer function, is {0} (b) {0,1} (c) {1} (d) none of these

Evaluate int_(-1)^(3)(x-[x])dx ,where [.] denotes the greatest integer function.

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

Evaluate int_(2)^(5)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x+[x])dx ,where [.] denotes the greatest integer function.

CENGAGE-RELATIONS AND FUNCTIONS-Exercise (Single)
  1. If f is periodic, g is polynomial function, f(g(x)) is periodic, g(2)=...

    Text Solution

    |

  2. The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {...

    Text Solution

    |

  3. The period of the function f(x)=(6x+7)+cospix-6x , where [dot] denotes...

    Text Solution

    |

  4. If f(x)a n dg(x) are periodic functions with periods 7 and 11, respect...

    Text Solution

    |

  5. The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+...

    Text Solution

    |

  6. Let f(x)={(0.1)^(3[x])}. (where [.] denotes greatest integer function ...

    Text Solution

    |

  7. If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= ...

    Text Solution

    |

  8. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  9. If f(x)=(-1)^([2x/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (whe...

    Text Solution

    |

  10. If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2, then (A) f(g(x))=x^2,x!=...

    Text Solution

    |

  11. If f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):}, then fof(x) is...

    Text Solution

    |

  12. Let f(x)=sinxa n dg(x)=(log)e|x|dot If the ranges of the composition f...

    Text Solution

    |

  13. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |

  14. If fa n dg are one-one functions, then f+g is one one fg is one one fo...

    Text Solution

    |

  15. The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (...

    Text Solution

    |

  16. Let h(x)=|k x+5|,t h edom a inoff(x)b e[-5,7], the domain of f(h(xx))b...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. If the function f:(1,)vec(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf...

    Text Solution

    |

  19. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  20. If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals....

    Text Solution

    |