Home
Class 12
MATHS
Let f(x)=sin[pi/6sin(pi/2sinx)] for all ...

Let `f(x)=sin[pi/6sin(pi/2sinx)]` for all `x in RR`

A

Range of `f " is " [-(1)/(2),(1)/(2)]`

B

Range of fog is `[-(1)/(2),(1)/(2)]`

C

`underset(x to 0)(lim)(f(x))/(g(x))=(pi)/(6)`

D

There is an `x in R` such that `(gof)(x)=1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`f(x)=sin((pi)/(6) sin((pi)/(2)sinx))`
We know that `-1 le sinx le 1`
`implies -(pi)/(2) le (pi)/(2)sinx le (pi)/(2)`
`implies -1 le sin((pi)/(2)sinx) le 1`
`implies -(pi)/(6) le (pi)/(6) sin((pi)/(2) sinx) le (pi)/(6)`
`implies -(1)/(2) le sin((pi)/(6) sin((pi)/(2)sinx)) le (1)/(2)`
Now, `fog(x)=sin((pi)/(6) sin((pi)/(2)sin((pi)/(2)sinx)))-1 le sin((pi)/(2)sinx) le 1`
`implies (-pi)/(2) le (pi)/(2)(sin((pi)/(2)sinx)) le (pi)/(2)`
`implies -1 le sin ((pi)/(2)(sin((pi)/(2)sinx))) le 1`
`implies (-pi)/(6)le (pi)/(6) sin((pi)/(2)(sin((pi)/(2)sinx))) le (pi)/(6)`
`implies (-1)/(2) le f(x) le (1)/(2)`
Thus, range of fog is also `[-(1)/(2),(1)/(2)].`
Now, `underset(xto0)(lim)(sin((pi)/(6)((pi)/(2)sinx)))/((pi)/(2) sinx)`
`=underset(xto0)(lim)(2)/(pi)(sin((pi)/(6)((pi)/(2)sinx)))/((pi)/(6)sin((pi)/(2) sinx))xx((pi)/(6)((pi)/(2)sinx))/(( sinx)/(x)xx x)`
`underset(x to 0)(lim) (2)/(pi) xx (pi)/(6)xx(sin((pi)/(2) sinx))/((pi)/(2)sinx)xx((pi)/(2)sinx)/(x)`
`=(1)/(3)xx (pi)/(2)=(pi)/(6)`
`gof(x) in [-(pi)/(2) sin((1)/(2)),(pi)/(2)sin((1)/(2))]`
`implies gof(x) ne 1`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|31 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|28 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

Statement 1: Let f(x)=sin(cos x)in[0,pi/2]dot Then f(x) is decreasing in [0,pi/2] Statement 2: cosx is a decreasing function AAx in [0,pi/2]

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

Find the range of the function f(x) =x Sin x-(1)/(2) sin^(2) x for x in (0,(pi)/(2))

lim_(xto pi)(sin3x)/(sin2x)

Find the area bounded by the following curve : (i) f(x) = sinx, g(x) = sin^(2)x, 0 le x le 2pi (ii) f(x) = sinx, g(x) = sin^(4)x, 0 le x le 2pi

Let f(x)=|2cos^2xsin2x-sinxsin2x2sin^2xcosxsinx-cosx0| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

Let f(x)=-sin^3x+3sin^2x+5 on [0,pi/2] . Find the local maximum and local minimum of f(x)dot

Evaluate: int(cosx)/(sin(x-pi/6)sin(x+pi/6))dx