Home
Class 12
MATHS
if P,Q are two points on the line 3x+4y+...

if `P,Q` are two points on the line `3x+4y+15=0` such that `OP=OQ=9` then the area of triangle `OPQ` is

A

18 sq. units

B

`18sqrt(2)` sq. units

C

27 sq. units

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B


`OA = OB = 9, OD = (15)/(sqrt(25)) = 3`
`:. AB = 2AD = 2 sqrt(81-9) = 2 sqrt(72) = 12 sqrt(2)`
Hence `Delta = (1)/(2) (3 xx 12 sqrt(2)) = 18 sqrt(2)` sq. units.
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    CENGAGE|Exercise Comprehension Type|3 Videos
  • STRAIGHT LINE

    CENGAGE|Exercise Multiple Correct Answers Type|8 Videos
  • STATISTICS

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos

Similar Questions

Explore conceptually related problems

P is a point on the line y+2x=1, and Q and R two points on the line 3y+6x=6 such that triangle P Q R is an equilateral triangle. The length of the side of the triangle is (a) 2/(sqrt(5)) (b) 3/(sqrt(5)) (c) 4/(sqrt(5)) (d) none of these

Let P and Q be any two points on the lines represented by 2x-3y = 0 and 2x + 3y = 0 respectively. If the area of triangle OPQ (where O is origin) is 5, then which of the following is not the possible equation of the locus of mid-point of PO? (a) 4x^2-9y^2 +30 = 0 (b) 4x^2-9y^2-30 = 0 (c) 9x^2-4y^2-30=0 (d) none of these

If P is a point (x ,y) on the line y=-3x such that P and the point (3, 4) are on the opposite sides of the line 3x-4y=8, then

Let 0-=(0,0),A-=(0,4),B-=(6,0)dot Let P be a moving point such that the area of triangle P O A is two times the area of triangle P O B . The locus of P will be a straight line whose equation can be

The straight line (x)/(4)+(y)/(3) =1 intersects the ellipse (x^(2))/(16)+(y^(2))/(9) =1 at two points A and B, there is a point P on this ellipse such that the area of DeltaPAB is equal to 6(sqrt(2)-1) . Then the number of such points (P) is/are

A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is

Tangents are drawn to the hyperbola 4x^2-y^2=36 at the points P and Q. If these tangents intersect at the point T(0,3) then the area (in sq units) of triangle PTQ is

Let O(0,0),P(3,4), and Q(6,0) be the vertices of triangle O P Q . The point R inside the triangle O P Q is such that the triangles O P R ,P Q R ,O Q R are of equal area. The coordinates of R are (a) (4/3,3) (b) (3,2/3) (c) (3,4/3) (d) (4/3,2/3)

If the point 3x+4y-24=0 intersects the X -axis at the point A and the Y -axis at the point B , then the incentre of the triangle OAB , where O is the origin, is

The area of the region bounded by the line 3x-5y - 15 =0 , x=1 and x=4 is :