Home
Class 12
MATHS
The eccentricity of the ellispse (x -3)...

The eccentricity of the ellispse ` (x -3)^(2) + ( y-4)^(2) = y^(2)/9` is

A

`(sqrt(3))/(2)`

B

`(1)/(3)`

C

`(1)/(3sqrt(2))`

D

`(1)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
B

`9(x-3)^(2) +9(y-4)^(2) =y^(2)`
`rArr 9(x-3)^(2) + 8y^(2) - 72y +144 =0`
`rArr 9 (x-3)^(2) + 8(y^(2) -9y) +144 =0`
`rArr 9 (x-3)^(2) + 8 [(y-(9)/(2))^(2)-(81)/(4)] +144 =0`
`rArr 9(x-3)^(2) + 8 (y-(9)/(2))^(2) = 162- 144 = 18`
`rArr(9(x-3)^(2))/(18) +(8(y-(9)/(2)))/(18) =1`
`rArr ((x-3)^(2))/(2) + ((y-(9)/(2)))/(9//4) =1`
`rArr e^(2) = 1 -(2xx 4)/(9) = (1)/(9) rArr e = (1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

The eccentricity of the ellipse 16x^2 + 25y^2 = 400 is

If e_(1) is the eccentricity of the ellipse (x^(2))/(25)+(y^(2))/9=1 and if e_(2) is the eccentricity of the hyperbola 9x^(2)-16y^(2)=144 , then e_(1)e_(2) is. . . . .

The eccentricity of the ellipse 9x^(2)+5y^(2)-54x-40y+116=0 is:

The eccentricity of the ellipse 16x^(2)+25y^(2)=400 is ……………… .

Find the lengths of the major and minor axes and the eccentricity of the ellipse ((3x-4y+2)^2)/(16)+((4x+3y-5)^2)/9=1

The eccentricity of ellipse (x^(2))/(25)+(y^(2))/(9)=1 is ……………. .

Find the eccentricity of the conic 4(2y-x-3)^2-9(2x+y-1)^2=80

The eccentricity of the ellipse 9x^2+25 y^2-18 x-100 y-116=0 is 25//16 b. 4//5 c. 16//25 d. 5//4