Home
Class 12
MATHS
If (x,y) lies on the ellipse x^(2)+2y^(3...

If `(x,y)` lies on the ellipse `x^(2)+2y^(3) = 2`, then maximum value of `x^(2)+y^(2)+ sqrt(2)xy - 1` is

A

`(sqrt(5)+1)/(2)`

B

`(sqrt(5)-1)/(2)`

C

`(sqrt(5)+1)/(4)`

D

`(sqrt(5)-1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

Any point on ellipse `x^(2) + 2y^(2) =2` is
`x = sqrt(2) cos theta, y = sin theta`
`alpha = x^(2) + y^(2) +sqrt(2) xy -1`
`= 2 cos^(2) theta + sin^(2) theta + sin 2 theta -1`
`=(1+cos 2 theta)/(2)+ sin 2 theta`
`alpha_(max) = (sqrt(5)+1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x is real, then the maximum value of y=2(a-x)(x+sqrt(x^2+b^2))

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If ( x +y+z ) = 9 and ( xy + yz + zx ) = 26 then find the value of x^(2) + y^(2) z^(2)

If x,y,in R^(+) satisfying x+y=3 , then the maximum value of x^2y is _____________.

If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum value of sqrt(x^2+y^2) is__________

If y = 2sqrt2x+c is a tangent to the circle x^(2) +y^(2) = 16 , find the value of c.

The point (x , y) lies on the line 2x+3y=6. The smallest value of the quantity sqrt(x^2+y^2) is mdot then the value of sqrt(13) m is_______

The slopes of the common tanents of the ellipse (x^2)/4+(y^2)/1=1 and the circle x^2+y^2=3 are (a) +-1 (b) +-sqrt(2) (c) +-sqrt(3) (d) none of these