Home
Class 12
MATHS
If omega is one of the angles between ...

If `omega` is one of the angles between the normals to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1' at the point whose eccentric angles are `theta` and `pi/2+theta` , then prove that `(2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))`

A

`(e^(2))/(sqrt(1-e^(2)))`

B

`(e^(2))/(sqrt(1+e^(2)))`

C

`(e^(2))/(1-e^(2))`

D

`(e^(2))/(1+e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

The equations of the normals to the ellipse `(x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1` at the points whose eccentric angles are `theta` and `(pi)/(2) + theta` are
`ax sec theta - by cosec theta = a^(2) -b^(2)` and `-ax cosec theta - by sec theta = a^(2) -b^(2)` respectively.
Since `omega` is the angle between these two normals. Therefore,
`tan omega=|((a)/(b)tan theta+(a)/(b)cot theta)/(1-(a^(2))/(b^(2)))|`
`rArr tan omega = |(ab(tan theta + cot theta))/(b^(2)-a^(2))|`
`rArr tan omega = |(2ab)/((sin 2 theta)(b^(2)-a^(2)))|`
`rArr tan omega = (2ab)/((a^(2)-b^(2))sin 2 theta)`
`rArr tan omega = (2a^(2)sqrt(1-e^(2)))/(a^(2)e^(2)sin2 theta)`
`rArr (2 cot omega)/(sin 2 theta) = (e^(2))/(sqrt(1-e^(2)))`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

P and Q are two points on the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1 whose eccentric angles are differ by 90^(@) , then

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then fin the ecentric angle theta of point of contact

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Find the eccentric angles of the extremities of the latus recta of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1

Find the equation of tangent nad normal to the ellipse 4x^(2)+y^(2)=32 at theta=(pi)/(4) .

If cos theta+sin theta=sqrt(2)cos theta then prove that cos theta-sin theta=sqrt(2)sin theta

Find the equations of tangent and normal to the ellipse x^(2)+4y^(2)=32 when theta=(pi)/(4) .

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

If (sqrt(3))b x+a y=2a b touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then the eccentric angle of the point of contact is (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2