Home
Class 12
MATHS
If the curve x^(2)+3y^(2)=9 subtends an ...

If the curve `x^(2)+3y^(2)=9` subtends an obtuse angle at the point `(2alpha, alpha)` then a possible value of `alpha^(2)` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B

The given curve is `(x^(2))/(9)+(y^(2))/(3) =1`, whose director circle is `x^(2) + y^(2) =12`.
For the required condition `(2alpha, alpha)` should lie inside the circle and outside the ellipse
i.e., `(2alpha)^(2) + 3alpha^(2) - 9 gt 0` and `(2alpha)^(2) + alpha^(2) - 12 lt 0`
i.e., `(9)/(7) lt alpha^(2) lt (12)/(5)`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

The set of values of m for which it is possible to draw the chord y=sqrt(m)x+1 to the curve x^2+2x y+(2+sin^2alpha)^y^2=1 , which subtends a right angle at the origin for some value of alpha , is [2,3] (b) [0,1] [1,3] (d) none of these

If the chord joining points P(alpha)a n dQ(beta) on the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 subtends a right angle at the vertex A(a ,0), then prove that tan(alpha/2)tan(beta/2)=-(b^2)/(a^2)dot

If vector vec b=(t a nalpha,-1, 2sqrt(sinalpha//2))a n d vec c=(t a nalpha, t a nalpha, 3/(sqrt(sinalpha//2))) are orthogonal and vector vec a=(1,3,sin2alpha) makes an obtuse angle with the z-axis, then the value of alpha is a alpha=tan^(-1)2 b. alpha=-tan^(-1)2 c. alpha=tan^(-1)2 d. alpha=tan^(-1)2

If the sum of the coefficient in the expansion of (alpha^2x^2-2alphax+1)^(51) vanishes, then find the value of alpha

If alpha and beta are the roots of x^(2)+6x-4=0 , find the values of (alpha-beta)^(2) .

If alpha and beta are the roots of x^(2)+6x-4=0 , find the value of (alpha-beta)^(2) .

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

If two distinct tangents can be drawn from the point (alpha, alpha+1) on different branches of the hyperbola (x^(2))/(9)-(y^(2))/(16)=1 , then find the values of alpha .

If the tangent to the curve y= (x)/(x^(2) - 3), x in r ( xne pm sqrt3) , at a point (alpha, beta ) ne (0, 0) on it is parallel to the line 2x + 6y -11 =0 , then (A) |6alpha + 2beta|=19 (B) |6alpha + 2 beta|=9 (C) |2 alpha + 6 beta |= 19 (D) | 2 alpha + 6 beta| = 11

If sin theta = 3 sin ( theta + 2 alpha) , then the value of tan (theta + alpha ) + 2 tan alpha is