Home
Class 12
MATHS
If the normals at alpha, beta,gamma and ...

If the normals at `alpha, beta,gamma` and `delta` on an ellipse are concurrent then the value of `(sigma cos alpha)(sigma sec alpha)` I

A

2

B

4

C

6

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let the equation of the ellipse be
`(x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1`
Equation of a normal at any point `P(theta)` on the ellipse is
`(a sec theta) x -(b cosec theta)y = a^(2)e^(2)`
Let normal is passing through a point `A(h,k)`
`rArr (ah sec theta - a^(2)e^(2))^(2) = (bk cosec theta)^(2)`
`rArr a^(2)h^(2) sec^(2) theta -2a^(3)e^(2)h sec theta +a^(4) e^(4)`
`= b^(2)k^(2) cosec^(2) theta = b^(2)k^(2) ((sec^(2)theta)/(sec^(2)theta-1))`
`rArr a^(2)h^(2) sec^(4) theta - 2a^(3) e^(2)h sec^(3) theta + (a^(4) e^(4) -a^(2)h^(2)-b^(2)k^(2))`
`sec^(2) theta + 2a^(3)a^(2)h sec theta - a^(4) e^(4) =0` (1)
If `alpha, beta, gamma` and `delta` be the roots of the above equation, then
`Sigma sec alpha =(2a^(3)e^(2)h)/(a^(2)h^(2)) = (2ae^(2))/(h)`
Multiplying equation (1) by `cos^(4) theta`, it reduces to
`a^(4)e^(4)cos^(4) theta - 2a^(3)e^(2)h cos^(3) theta - (a^(4)e^(4)-a^(2)h^(2)-b^(2)k^(2))`
`cos^(2) theta + 2a^(3) e^(2) h cos theta - a^(2)h^(2) = 0` (2)
Then `Sigma cos alpha = (2a^(3)e^(2)h)/(a^(4)e^(4)) = (2h)/(ae^(2))`
Hence, we have
`(Sigma sec alpha) (Sigma cos alpha) = (2ae^(2))/(h).(2h)/(ae^(2)) =4`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos
  • ELLIPSE AND HYPERBOLA

    CENGAGE|Exercise Question Bank|1 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma in [0,pi] and if alpha , beta , gamma are in A.P then ( sin alpha - sin gamma)/( cos gamma -cos alpha) is equal to

If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2beta) then the value of (2 sin^2 beta - sin^2 alpha ) where beta!= n pi is

If alpha, beta, gamma are the cube roots of a negative number p, then for any three real numbers x,y,z the value of (x alpha+y beta+ z gamma)/(x beta +y gamma+z alpha) is

IF alpha , beta and gamma are angles such that tan alpha + tan beta + tan gamma = tan alpha tan beta tan gamma and x= cos alpha + i sin alpha , y = cos beta + i sin beta and z= cos gamma + i sin gamma , then xyz =

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

A line makes angles alpha,beta,gammaa n ddelta with the diagonals of a cube. Show that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4//3.

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals