Home
Class 12
MATHS
If alpha,beta,gamma, in (0,pi/2) , then ...

If `alpha,beta,gamma, in (0,pi/2)` , then prove that `(s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1`

Text Solution

Verified by Experts

`sin(alpha+beta+gamma)=sin alpha cos betacos alpha+cos alpha sin beta cos gamma+cos alpha cos betasin gamma-sin alpha sin beta sin gamma`
or `sin(alpha+beta+gamma)-sin alpha-sin beta-sin gamma`
`=sin alpha(cos betacos gamma-1)+sinbeta(cos alpha cos gamma-1)`
`+sin gamma(cos alpha cos beta-1)-sin alpha sin beta sin gamma`
`therefore sin (alpha+beta+gamma)-sin alpha-sin beta-sin gammalt0`
or `sin (alpha+beta+gamma)ltsin alpha+sin beta+sin gamma`
or `(sin(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)lt1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If cos (alpha - beta) + cos (beta - gamma) + cos (gamma - alpha) = (-3)/(2) then prove that cos alpha + cos beta+ cos gamma = sin alpha + sin beta + sin gamma = 0 .

Given alpha+beta-gamma=pi, prove that sin^2alpha+sin^2beta-sin^2gamma=2sinalphasinbetacosgammadot

If cosalpha+cosbeta+cosgamma=0a n da l sosinalpha+sinbeta+singamma=0, then prove that cos2alpha+cos2beta+cos2gamma =sin2alpha+sin2beta+sin2gamma=0 sin3alpha+sin3beta+sin3gamma=3sin(alpha+beta+gamma) cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma)

If alpha , beta , gamma in [0,pi] and if alpha , beta , gamma are in A.P then ( sin alpha - sin gamma)/( cos gamma -cos alpha) is equal to

If cosalpha=1/2(x+1/x)a n dcosbeta=1/2(y+1/y),(x y >0); x , y ,alpha,beta in R then sin(alpha+beta+gamma+singammaAAgamma in R cosalphacosbeta=1AAalpha,beta in R (cosalpha+cosbeta)^2=4AAalpha,beta in R sin(alpha+beta+gamma)=sinalpha+sinbeta+s ingammaAAa , b ,gamma in R

If 0 lt alpha lt beta lt gamma lt pi//2 , then the equation (x-sinbeta)(x-singamma)+(x-sinalpha)(x-singamma)+(x-sinalpha)(x-sinbeta)=0 has

If sin(alpha+beta)sin(alpha-beta)=singamma(2sinbeta+singamma), where 0 < alpha,beta,gamma < pi, then the straight line whose equation is xsinalpha+ysinbeta-singamma=0 passes through point (a) (1,1) (b) (-1,1) (c) (1,-1) (d) none of these

Prove that sum_(alpha+beta+gamma = 10) (10 !)/(alpha!beta!gamma!)=3^(10)dot

If alpha,beta,gamma are the direction angles of a line (i)Show that sin^2 alpha + sin^2 beta +sin^2 gamma=2 . (ii)Find the value of cos2alpha +cos2beta+cos2gamma .

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these