Home
Class 12
MATHS
Prove that (cos alpha+cos beta)^(2)+(sin...

Prove that `(cos alpha+cos beta)^(2)+(sin alpha -sin beta)^(2)=4 cos^(2) ((alpha+beta)/(2))`

A

`4cos^2((alpha-beta)/2)`

B

`4cos^2((alpha+beta)/2)`

C

`4cos^2(alpha-beta)`

D

`cos^2((alpha+beta)/2)`

Text Solution

Verified by Experts

The correct Answer is:
A

LHS=`(cos alpha+cos beta)^(2)+(sin alpha+sinbeta)^(2)`
`={2cos((alpha+beta)/(2))cos((alpha-beta)/(2))}^(2)+`
`{2sin((alpha+beta)/(2))cos((alpha-beta)/(2))}^(2)`
`=4 cos^(2)((alpha-beta)/(2)){cos^(2)(alpha+beta)/(2)+sin^(2)(alpha+beta)/(2)}`
`=4cos^(2)((alpha-beta)/(2))`=RHS.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that cos(alpha+beta )=cosalphacosbeta-sinalphasinbeta

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

If (cos alpha)/(cos A)+(sin alpha)/(sin A)+(sin beta)/(sin A)=1 , where alpha and beta do not differ by an even multiple of pi , prove that (cos alpha cos beta)/(cos^(2)A)+(sin alpha sin beta)/(sin^(2)A)=

If (sin alpha)/(sin beta)=(cos gamma)/(cos delta), then (sin ((alpha-beta)/2) . cos ((alpha+beta)/2) . cos delta)/(sin ((delta-gamma)/2) . sin ((delta+gamma)/2) . sin beta)

If x =cos alpha+cos beta-cos(alpha+beta) and y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2)) , then (x-y) equals

If cos alpha + cos beta = 1//2 and sin alpha+ sin beta = 1//3 , then

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

By geometrical interpretation, prove that (i) sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha (ii) cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta