Home
Class 12
MATHS
Prove that sum(r=1)^n(1/(costheta+"cos"(...

Prove that `sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta costhetacos (n+1)theta),(w h e r en in N)dot`

Text Solution

Verified by Experts

`S=sum_(r=1)^(n)((1)/(cos theta+cos(2r+1)theta))`
`=sum_(r=1)^(n)((sin theta)/(2cos(r+1)thetacosrthetasin theta))`
`=(1)/(2sin theta)(sum_(r=1)^(n)(sin(r+1)theta-rtheta)/(cos(4+1)theta cos rtheta))`
`=(1)/(2sin theta)(sum_(r=1)^(n)(sin(r+1)theta cos rtheta-sinrthetacos(r+1)theta)/(cos (r+1)thetacos rtheta)`
`=(1)/(2sin theta)(sum_(r=1)^(n)(r+1)theta-tan rtheta)`
`=(1)/(2sin theta)(tan (n+1)theta-tan theta)`
`=(sin n theta)/(2 sin theta. cos theta cos (n+1)theta)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta* costheta*cos (n+1)theta),(w h e r e n in N)dot

(sintheta+sin2theta)/(1+costheta+cos2theta)

Prove that (1-costheta +cos2theta )/(sin2theta -sintheta)=cottheta

Prove that ((1+sin theta- cos theta)/(1+sin theta+costheta))^2=(1-cos theta)/(1+cos theta)

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta

Prove that sintheta+sin3theta+sin5theta+.....+sin(2n-1)theta=(sin^2ntheta)/(sintheta)dot

Prove that (1+costheta+isintheta)^(n)+(1+costheta-isintheta)^(n)=2^(n+1)cos^(n)((theta)/(2))cos((ntheta)/(2))

Prove that (sin(90^(@)-theta))/(1+sintheta)+(costheta)/(1-cos(90^(@)-theta))=2sectheta

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

Prove that sin (n + 1) theta sin (n - 1) theta + cos (n + 1) theta cos (n - 1) theta = cos 2 theta , n in ZZ .