Home
Class 12
MATHS
If sinalpha+sinbeta and cosalpha+cosbeta...

If `sinalpha+sinbeta` and `cosalpha+cosbeta=b ,` prove that `tan(alpha-beta)/2=+-sqrt((4-a^2-b^2)/(a^2+b^2))` .

Text Solution

Verified by Experts

Given `sin alpha+sin beta=alpha`
and `cos alpha+cos beta=b`
Now `(cos alpha+cos beta)^(2)+(sin alpha+sinbeta)^(2)=b^(2)+alpha^(2)`
or `cos^(2)alpha+cos^(2)beta+2cos alpha cos beta+sin^(2)alpha+sin^(2)beta`
`+2sinalpha sin beta=b^(2)+alpha^(2)`
or `(cos^(2)alpha+sin^(2)alpha)+(cos^(2)beta+sin^(2)beta)+2(cos alpha cos beta+sin alpha sin beta)=alpha^(2)+b^(2)`
or `2+2cos(alpha-beta)=alpha^(2)+b^(2)`
or `-cos(alpha-beta)=(alpha^(2)+beta^(2)-2)/(2)`
Now, `tan""(alpha-beta)/(2)+-sqrt((1-cos (alpha-beta))/(1+cos(alpha-beta)))`
`=+-sqrt(((1-(a^(2)+b^(2)-2))/(2))/((1+(a^(2)+b^(2)-2))/(2)))=+-sqrt((4-a^(2)-b^(2))/(a^(2)+b^(2)))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sinalpha+sinbeta=a and cosalpha+cosbeta=b , prove that tan((alpha-beta)/2)=+-sqrt((4-a^2-b^2)/(a^2+b^2)) .

If sinalpha-sinbeta=1/3andcosbeta-cosalpha=1/2, show that cot(alpha+beta)/2=2/3

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If cosalpha+cosbeta=1/2a n dsinalpha+sinbeta=1/3,t h e n

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

Prove that |cosalpha-cosbeta|lt=|alpha-beta|

If (cosalpha)/(cosbeta)=m and (cosalpha)/(sinbeta)=n then prove that (m^(2)+n^(2))cos^(2)beta=n^(2) .

If the chord joining points P(alpha)a n dQ(beta) on the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 subtends a right angle at the vertex A(a ,0), then prove that tan(alpha/2)tan(beta/2)=-(b^2)/(a^2)dot

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

(sinalpha+cosecalpha)^(2)+(cosalpha-secalpha)^(2)-tan^(2)alpha-cot^(2)alpha=?