Home
Class 12
MATHS
Evaluate cos alpha cos 2 alpha cos 3 alp...

Evaluate `cos alpha cos 2 alpha cos 3 alpha..........cos 999alpha`, where `alpha=(2pi)/(1999)`

Text Solution

Verified by Experts

Let
`P=cos alpha cos 2 alpha cos 3 alpha........cos 999alpha`.
`Q=sin alpha sin 2 alpha sin 3 alpha.........sin 999alpha`.
Then `2^(999)PQ=(2sin alpha cos alpha)(2 sin 2 alpha cos 2 alpha)`......
`(2sin 999alpha cos 999alpha)`
`=sin 2alpha sin 4 alpha......sin 1998alpha`
`(sin alpa sin 4 alpha.......sin 998alpha)[-sin 999alpha cos 999alpha]`
`[-sin (2pi-1002alpha)]....[-sin(2pi-1998alpha)]`
`(because 2pi=199alpha)`
`=sin 2alpha sin 4 alpha.......sin 998alpha sin 997alpha` ...... `sin alpha=Q`.
It is easy to see that `Q ne0`, hence the desired product is `P=(1)/(2^(999))`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

(cos2 x - cos2 alpha)/(cos x - cos alpha)

Sum the series: sqrt(1+cos alpha)+sqrt(1+cos 2alpha)+sqrt(1+cos 3alpha) +.......to n terms, where 0ltalphaltpi

The sides of a triangle are sin alpha , cos alpha and sqrt( 1+ sin alpha cos alpha ) for some 0 lt alpha lt pi/2 then the greater angle of the triangle is

If n=1,2,3,……. then cos alpha cos 2 alpha cos 4 alpha ……. Cos 2^(n-1) alpha is equal to

Prove that sin^2alpha-sin^4alpha= cos^2alpha-cos^4alpha

if cos alpha + sin alpha = 3/4 , then sin ^6 alpha + cos ^6 alpha =

If A=[(sin alpha, cos alpha),(-cos alpha, sin alpha)] , then verify that A'A=I

If A=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] , then verify that A'A=I

IF tan alpha = ( sin alpha - cos alpha )/( sin alpha + cos alpha) , then sin alpha + cos alpha is