Home
Class 12
MATHS
Let f(x)=2cos e c2x+secx+cos e cxdot The...

Let `f(x)=2cos e c2x+secx+cos e cxdot` Then find the minimum value of `f(x)forx in (0,pi/2)dot`

Text Solution

Verified by Experts

`f(x)=2co sec 2 x +sec x +co secx`
`=2 co sec 2x+(sqrt(secx)-sqrt(co sec x))^(2)+(2sqrt(2))/(sqrt(2cos x.sinx))`
`therefore =2 co sec 2x+(sqrt(secx)-sqrt(co sec x))^(2)+2sqrt(2)sqrt(co sec 2x)`
Clearly, minimum value occurs for `x=(pi)/(4)`, as for this value of x,
`sqrt(sec x)=sqrt(co secx)=0` and `co sec 2x=1`.
So, `f_("min"(x=(pi)/(4))=2(sqrt(2)+1)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

Let f(x)=a/x+x^2dot If it has a maximum at x=-3, then find the value of adot

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

If f(x , y) satisfies the equation 1+4x-x^2=sqrt(9sec^2y+4cos e c^2y) then find the value of xa n dtan^2ydot

Let f(x)=|2cos^2xsin2x-sinxsin2x2sin^2xcosxsinx-cosx0| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of f(x) is 0 (b) -15 (c) 3-2pi none of these

Let f(x)={(log(1+x)^(1+x)-x)/(x^2)}dot Then find the value of f(0) so that the function f is continuous at x=0.

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

Iff(x)=int_((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))dtheta, then find the value of f^(prime)(pi/2)dot