Home
Class 12
MATHS
Prove that tanpi/(16)=sqrt(4+2sqrt(2))-(...

Prove that `tanpi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)`

Text Solution

Verified by Experts

`tan ""(pi)/(16)=tan 11.25^(@)`
We know that on `22.5^(@)=sqrt(2)-1`
`tan 2theta=(2tan theta)/(1-tan^(2)theta)`
Put `theta=11.5^(@)`
`therefore tan 22.5^(@)=(2 tan 11.25^(@))/(1-tan^(2)11.25^(@))`
`therefore (sqrt(2)-1)x^(2)+2x-(sqrt(2)-1)=0`, where `x=tan 11.25^(@)`
`therefore x=(-2+sqrt(4+4(sqrt(2)-1))^(2))/(2(sqrt(2)-1))`
`(-1)/(sqrt(2)-1)+(sqrt(4-2sqrt(2)))/(sqrt(2)-1)`
`=-(sqrt(2)+1)+sqrt(4-2sqrt(2)).(sqrt(2)+1)`
`=-(sqrt(2)+1)+sqrt((4-2sqrt(2))(sqrt(2)+1)^(2))`
`=-(sqrt(2)+1)+sqrt((4-2sqrt(2))(3+2sqrt(2)))`
`=-(sqrt(2)+1)+sqrt(4+2sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that (sqrt(2),sqrt(2)) (-sqrt(2), -sqrt(2) ) and (-sqrt(6 ) , sqrt(6)) are ther vertices of an equilateral triangle.

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

If pi < x < 2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))="cot(x/2+pi/4)dot

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

The value of (log)_(sqrt(4+2sqrt(2))sqrt(4-2sqrt(2)))2^9 is...........

Prove that: 2^(sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-(log)_a4sqrt(b/a)+(log)_b4sqrt(a/b))dotsqrt((log)_a b)={2ifbgeqa >1 and 2^(log_a(b) if 1

Show that cot (7 (1)/(2)) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6) .

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1) = {-2 , x 1}