Home
Class 12
MATHS
If cos(A+B+C)=cosAcosBcosC , then find t...

If `cos(A+B+C)=cosAcosBcosC ,` then find the value of `(8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)`

Text Solution

Verified by Experts

We have to prove that
`cos A cos (B+C)-sinA sin (B+C)=cos A cos B cos`
`rArr cos A (cos (B+C)-cos B cos C )=sin A sin (B+C)`
`rArr sin(B+C)=-(cos A sin B sinC)/(sin A)`
Similarly
`sin (C+A)=(-cos B sin C sin A)/(sin B)`
and `sin (A+B)=(-cos C sin A sin B)/(sin C)`
`therefore sin(A+B)sin(B+C)sin(C+A)`
`=-(cos A sin B sin C)/(sin A)(cos B sin Csin)/(sin B)`
`(cos C sin A sin)/(sin C)`
`=-(1)/(8)sin 2A sin 2B sin 2C`
`rArr (8sin(B+C)sin(C+A)sin(A+B))/(sin 2A sin 2B sin 2C)=-1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In quadrilateral A B C D , if sin((A+B)/2)cos((A-B)/2)+"sin"((C+D)/2)cos((C-D)/2)=2 then find the value of sinA/2sinB/2sinC/2sinD/2dot

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

If the incircle of the triangle ABC passes through its circumcenter, then find the value of 4 sin.(A)/(2) sin.(B)/(2) sin.(C)/(2)

In a right angle triangle ABC, right angle is at B ,If tan A=sqrt(3) , then find the value of (i) sin A cos C+ cos A sin C " "(ii) cos A cos C -sin A sin C

Expand cos ( A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = (pi)/(2) .

If A + B + C = 180^(@) , prove that sin(B + C - A) + sin (C + A - B) + sin(A + B + C) = 4 sin A sin B sin C.

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

If in triangle A B C ,/_C=45^0 then find the range of the values of sin^2A+sin^2Bdot

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)/c)^4 is