Home
Class 12
MATHS
If x+y+z=pi/2, then prove that |sinxsiny...

If `x+y+z=pi/2,` then prove that `|sinxsinysinzcosxcosycoszcos^3xcos^y ycos^3z|=0`

Text Solution

Verified by Experts

D=`|{:(sinx,siny,sinz),(cosx,cosy,cosz),(cos^(3)x,cos^(3)y,cos^(3)z):}|`
Expanding along `R_(3)`, we get
`D=sum cos^(3)x sin(y-z)`
Given `x+y+z=(pi)/(2)`
`therefore D=sumsin^(3)(y+z)sin(y-z)`
`=sumsin^(2)(y+z)sin(y+z)sin(y-z)`
`=sum (1-sin^(2)x)(sin^(2)y-sin^(2)z)`
=0
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

Show that sin(x+y)sin(x-y)= sin^2 x -sin^2 y .Hence prove that sin(x+y)sin(x-y)+sin(y+z)sin(y-z) +sin(z+x)sin(z-x)=0

IF sin^(-1) X+ sin^(-1) y+ sin^(-1) z= pi , then prove that x^4 +y^4+ z^4 +4x^2 y^2 z^2 = 2(x^2 y^2 +y^2 z^2+z^2x^2).

If a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d ,a x2 3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |x_1y_1z_1x_2y_2z_2x_3y_3z_3|=(d-f){((d+2f))/(a b c)}^(1//2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , then prove that x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))

Prove that |(x+2a,y+2b,z+2c),(x,y,z),(a,b,c)|=0

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi/2,t h e n (a) x+y+z-x y z=0 (b) x+y+z+x y z=0 (c) x y+y z+z x+1=0 (d) x y+y z+z x-1=0

Using matrix method, show that following system of equation is inconsistent : 2x+3y-z+4=0 x-y+2z-7=0 x+4y-3z+5=0

If x+y+z=5 and x y+y z+z x=3 , then the greatest value of (x) is