Home
Class 12
MATHS
If x ,y in R and x^2+y^2+x y=1, then fi...

If `x ,y in R` and `x^2+y^2+x y=1,` then find the minimum value of `x^3y+x y^3+4.`

Text Solution

Verified by Experts

`x^(2)+y^(2)+xy=1`
Let `x=r cos theta, y=r sin theta`
`therefore r^(2)cos^(2)theta+r^(2)sin^(2)theta+r^(2)(cos theta)(sin theta)=1`
`therefore r^(2)sin theta cos theta=1-r^(2)`
`therefore r^(2)=(2)/(2+sin 2theta)`
Now, `-1 lesin 2 theta le1`
`therefore 1 le2+sin 2thetale3`
`therefore (1)/(3)lt(1)/(2+sin 2theta)le1`
`therefore(2)/(3)le(2)/(2+sin 2theta)le2`
or `(2)/(3)ler^(2)le2`
Now `E=x^(3)y+xy^(3)+4`
`=xy(x^(2)+y^(2))+4`
`=r^(2)sintheta cos theta(r^(2)cos^(2)theta+r^(2)sin^(2)theta)+4`
`=r^(2)(1-r^(2))+4`
`=(!7)/(4)-(r^(2)-(1)/(2))^(2)`
`therefore E_("min")=(17)/(4)-(2-(1)/(2))^(2)=2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x,y in R^(+) such that x + y = 8, then find the minimum value of (1 + (1)/(x)) (1 + (1)/(y))

If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum value of sqrt(x^2+y^2) is__________

If (x+1, y-2)=(3,1), find the values of x and y.

If x,y,in R^(+) satisfying x+y=3 , then the maximum value of x^2y is _____________.

Let x,y in R , then find the maximum and minimum values of expression (x^(2)+y^(2))/(x^(2)+xy+4y^(2)) .

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.

If R={(x,y): x,y in W, x ^(2)+y^(2)=25} , then find the domain and range or R.