Home
Class 12
MATHS
Prove that in triangle ABC, 2cos A cosB ...

Prove that in `triangle ABC, 2cos A cosB cos Cle(1)/(8)`.

Text Solution

Verified by Experts

`2 cos A cos B cos C`
`[cos(A+B)+cos(A-B)]cos C`
`=[-cosC+cos(A-B)]cosC`
`=cos(A-B)cosC-cos^(2)C`
`le cos C-cos^(2)C` [As `cos (A-B)le1`]
`=1//4-(cosC-1//2)^(2)le1//4`
So, `cos A cos B cos C le1//8`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC , bcosc +c cosB is:

Prove that in triangle ABC, sin A+sin B+sin Cle(3sqrt(3))/(2)

Prove that in triangle A B C ,cos^2A+cos^2B-cos^2C=1-2sinAsinBcosCdot

In any triangle ABC, prove that a cos A+b cos B +c cos C =(8 triangle^(2))/(abc) .

Prove that sin A/1+cos A = 1-cos A/sin A

If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to

in a triangle ABC , ( cos A)/(a) = (cos B )/( b) = ( cos C )/( c ) if a=(1 )/( sqrt(6)) then the area of the triangle ( in square units ) is

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A + tan B + tan C is

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle