Home
Class 12
MATHS
In triangleABC, prove that cos^(2)A+cos^...

In `triangleABC`, prove that `cos^(2)A+cos^(2)B+cos^(2)Cge(3)/(4)`.

Text Solution

Verified by Experts

`cos^(2)A+cos^(2)B+cos^(2)C`
`=1-sin^(2)A+cos^(2)B+cos^(2)C`
`=1+cos(A-B)cos(A+B)+cos^(2)C`
`=1-cos(A-B)cosC+cos^(2)C`
`ge1-cosC+cos^(2)C` [As `cos(A-B)le1`]
`=(cos C-1//2)^(2)+3//4ge3//4`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that cos2A=cos^2 A -sin^2 A

In triangleABC , angleC =90^o ,then cos^(2)A +cos^(2)B is :

Prove that cos3A=4cos^3 A-3cosA

If triangleABC is a right triangle and if angleA=pi/2 , then prove that (i) cos^(2) B+cos^(2)C=1 (ii) sin^(2) B+sin^(2) C=1 cos B-cos C=-1+2 sqrt2 cos""B/2sin ""C/2

In any triangle ABC, prove that a cos A+b cos B +c cos C =(8 triangle^(2))/(abc) .

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

In a triangle ABC, prove that (a^(2)+b^(2))/(a^(2)+c^(2))=(1+cos (A-B) cos C)/(1+cos (A-C) cos B)

In any triangle A B C , prove that: (1+cos(A-B)cos C)/(1+cos(A-C)cos B)=(a^2+b^2)/(a^2+c^2)

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .