Home
Class 12
MATHS
In a A B C , if tanA/2,tanB/2,tanC/2a r...

In a ` A B C ,` if `tanA/2,tanB/2,tanC/2a r einAdotPdot,` then show that `cosA ,cosB ,cosC` are in `AdotPdot`

Text Solution

Verified by Experts

Given `tan""A//2,tanB//2,tanC//2` are in AP .
`therefore tanA//2-tanB//2=tanB//2-tanC//2`
`therefore (sinA//2)/(cosA//2)-(sinB//2)/(cosB//2)=(sinB//2)/(cosB//2)-(sinC//2)/(cosC//2)`
`rArr(SinA//2cosB//2-sinB//2cosA//2)/(cosA//2,cosB//2)`
`=(sin B//2cosC//2-sinC//2.cosB//2)/(cosB//2.cosC//2)`
`rArr(sin((A-B)/(2)))/(cosA//2)=(sin((B-C)/(2)))/(cosC//2)`
`rArr sin((A-B)/(2))sin((A+B)/(2))=sin((B-C)/(2)s)in((B+C)/(2))`
`rArr cos B-cosA=cosC-cosB`
Hence, `cosA,cosB,cosC` are in AP.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a /_\A B C , if tanA/2,tanB/2,tanC/2"are in"AdotPdot, then show that cosA ,cosB ,cosC are in AdotPdot

Prove that cosA+cosB+cosC=1+r/R

In A B C , prove that cosA+cosB+cosClt=3/2dot

Show that cosA/a +cosB/b +cosC/c =(a^2 +b^2 +c^2 )/2abc

If a^2, b^2,c^2 are in A.P., then prove that tanA ,tanB ,tanC are in H.P.

In triangle A B C , if cotA ,cotB ,cotC are in AdotPdot, then a^2,b^2,c^2 are in ____________ progression.

Show that (b+c)cosA +(c+a)cosB +(a+b)cosC =a+b+c

In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of tanA ,tanB ,tanC are, respectively (a) 1,2,3 (b) 3,2//3,7//3 (c) 4,1//2 ,3//2 (d) none of these

If A,B,C, are the angles of a triangle such that cotA/2=3tanC/2, then sinA ,sinB ,sinC are in AdotPdot (b) GdotPdot (c) HdotPdot (d) none of these

Prove that ("a c o s"A+b cosB+ccosC)/(a+b+c)=r/Rdot