Home
Class 12
MATHS
If x/("tan"(theta+alpha))=y/("tan"(theta...

If `x/("tan"(theta+alpha))=y/("tan"(theta+beta))=z/(tan(theta+gamma)),` then show that `sum(x+y)/(x-y)sin^2(alpha-beta)=0`

Text Solution

Verified by Experts

`(x)/(y)=(tan (theta+alpha))/(tan(theta+beta))`
By componendo and dividendo, we get
`(x+y)/(x-y)=(tan(theta+alpha)+tan(theta+beta))/(tan(theta+alpha)-tan(theta-beta))=(sin (2theta+alpha+beta))/(sin(alpha-beta))`
`therefore (x+y)/(x-y)sin^(2)(alpha-beta)=sin(2theta+alpha+beta)sin(alpha-beta)`
`=(1)/(2)[cos2(theta+beta)-cos2(theta+alpha)]`
Similarly,
`(y+z)/(y-z)sin^(2)(beta-gamma)=(1)/(2)[cos2(theta+gamma)-cos2(theta+1)`
and `(z+x)/(z-x)sin^(2)(gamma-alpha)=(1)/(2)(cos 2 (theta+alpha)-cos2(theta+gamma)`
Adding Eqs. i , ii, and iii, we get LHS=0.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c (a+b)/(a-b)sin^2(alpha-beta)+(b+c)/(b-c)sin^2(beta-gamma)+(c+a)/(c-a)sin^2(gamma-alpha)=0

If (tan(alpha+beta-gamma))/("tan"(alpha-beta+gamma))=(tangamma)/(tanbeta),(beta!=gamma) then sin2alpha+sin2beta+sin2gamma= (a) 0 (b) 1 (c) 2 (d) 1/2

If 2 cos alpha = x + (1)/(x) and 2 cos beta = y + (1)/(y) , show that xy - (1)/(xy) = 2i sin (alpha - beta)

IF tan 2 theta . Tan theta = 1 then theta is

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

Prove that tan^2 (theta)-sin^2 (theta)= tan^2 (theta) sin^2 (theta)

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .