Home
Class 12
MATHS
If 0<alpha<pi/2a n dsinalpha+cosbeta+tan...

If `0

Text Solution

Verified by Experts

`sin alpha+(tan alpha+cot alpha)+(sec alpha+co sec alpha)=7`
or `(sin alpha+cos alpha)+(1)/(sin alpha cos alpha)+(sin alpha+cos alpha)/(sin alpha cos alpha)=7`
or `(sin alpha+cos alpha)(1+(1)/(sin alpha cos alpha))`
`=7-(1)/(sin alphacos alpha)`
Squaring both sides, we get
or `(1+sin 2alpha)(1+(4)/(sin 2 alpha)+(4)/(sin^(2)2alpha))`
`=49-(28)/(sin 2alpha)+(4)/(sin^(2)2alpha)`
Let `sin 2 alpha=x.` then
`(1+x)(1+(4)/(x)+(4)/(x^(2)))=49-(28)/(x)+(4)/(x^(2))`
or `(1+x)(x^(2)+4x+4)=49x^(2)-28x+4`
or `x^(3)-44x^(2)+36x=0`
or `x^(2)-44x+36=0 ("as" x=sin 2 alpha ne 0)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A=|{:(8,0,0),(0,-1,0),(0,0,1):}| then A is:

If A_1=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)],A_2=[(0, 0, 0,i),(0, 0,-i, 0), (0,i,0, 0),(-i,0, 0, 0)],t h e nA_i A_k+A_k A_i is equal to a. 2Iifi=k b. Oifi!=k c. 2lifi!=k d. O always

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):}] , then

If the points (a, 0), (b,0), (0, c) , and (0, d) are concyclic (a, b, c, d > 0) , then prove that ab = cd .

If A is a square matrix such that A(adjA)=[(4,0,0),(0,4,0),(0,0,4)], then =(|adj(adjA)|)/(2|adjA|) is equal to

If x,y,z are nonzero real number , then the inverse of matrix A= {:[( x,0,0),( 0,y,0) ,( 0,0,z) ]:} is

If the line a x+b y+c=0 is a normal to the curve x y=1, then a >0,b >0 a >0,b >0 (d) a<0,b<0 none of these

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

Find the sum of 0.40 + 0.43 + 0.46 + .... + 1.