Home
Class 12
MATHS
If sin x+siny+sinz=0=cosx+cosy+cosz, the...

If `sin x+siny+sinz=0=cosx+cosy+cosz`, then find the value of `cos(theta-x)+cos(theta-z)`

Text Solution

Verified by Experts

The correct Answer is:
0

`cos(theta-x)+cos(theta-y)+cos(theta-2)`
`=cos theta(sumcosx)+sin(sum sin)=0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

determinant |"cos theta sin theta -sin theta cos theta

If cos^(-1) (1/(5sqrt(2)))= theta find the value of sin theta and cot theta

If sinx+siny geq cosa cosx, AA x in R then siny+cos a=

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Solve sin 2 theta+cos theta=0 .