Home
Class 12
MATHS
show that 2^(sin x)+2^(cos x)ge2^(1-(1)/...

show that `2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))`

Text Solution

Verified by Experts

Since AM of two positive quantities `ge` their GM.
`(2^(sinx)+2^(cosx))/(2)gesqrt(2^(sinx)2^(cosx))`
`=sqrt(2^(sinx)2^(cosx))`
`sqrt(2^(sqrt2sin(x+(pi)/(4))))gesqrt(2^(-sqrt(2)))`
`rArr 2^(sin x)+2^(cosx)ge2.2^((-1)/sqrt(2))=2^(1-(1)/sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

3(2-x)ge2(1-x)

Show that sin^-1 x+cos^-1 x=pi/2 .

Show that : tan (cos^(-1)x) = (sqrt(1-x^(2)))/x

If 1/(sqrt(2))

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

(sin ^(-1) x )/( sqrt( 1 - x ^(2)) )

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)