Home
Class 12
MATHS
If t a nbeta=(ns inalphacosalpha)/(1-ns ...

If `t a nbeta=(ns inalphacosalpha)/(1-ns in^2alpha)` , show that `tan(alpha-beta)=(1-n)t a nalphadot`

Text Solution

Verified by Experts

`tan beta=(nsin alpha cos alpha)/(1-n sin^(2)alpha)=([(nsinalphacos alpha)/(cos^(2)alpha)])/([(1)/(cos^(2)alpha)-(n sin^(2)alpha)/(cos^(2)alpha)])`
[Dividing numerator and enominator by `cos^(2)alpha`]
`=(n tan alpha)/(sec^(2)alpha-n tan^(2)alpha)=(n tan alpha)/(1+tan^(2)alpha-n tan^(2)alpha)`
`=(n tan alpha)/(1+(1-n)tan^(2)alpha)`
Now, `tan(alpha-beta)=(tan alpha-tan beta)/(1+tan alpha tan beta)`
`=[(tan alpha-(n tan alpha)/(1+(1-n)tan^(2)alpha))/(1+tan alpha(n tan alpha)/(1+(1-n)tan^(2)alpha))]`(From Eq. i)
`=(tan alpha+(1-n)tan^(3)alpha-n tan alpha)/(1+(1-n)(tan^(2)alpha+n tan^(2)alpha)`
`=((1-n)tan alpha+(1-n)tan^(3)alpha)/(1+tan^(2)alpha)`
`=(1-n)tan alpha`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alpha-beta)=(1-n)t a nalphadot

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .

Prove that sin4 alpha=4tan alpha (1- tan^(2)alpha)/((1+tan^2 alpha)^2

If varphi(alpha,beta)=|cosalpha-s inalpha1s inalphacosalpha1"cos"(alpha+beta)-sin(alpha+beta)1| , then f(300 , 200)=f(400 , 200) f(200 , 400)=f(200 , 600) f(100 , 200)=f(200 , 200) none of these

Prove that sin 4alpha = 4 tan alpha (1 - tan^(2) alpha)/((1 + tan^(2) alpha)^(2))

Using mean value theorem, show that (beta-alpha)/(1+beta^2) alpha > 0.

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in