Home
Class 12
MATHS
underset(r=0)overset(n)(sum)sin^(2)""(rp...

`underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n)` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`n//2`

`sum_(r=1)^(n-1)sin^(2)""(rpi)/(n)=sum_(r=1)^(n-1)(1-cos(2rpi//n))/(2)`
`=(1)/(2)(n-1-(sin(n-1)(pi)/(n))/(sin((pi)/(n)))cos(((2pi)/(n)+(n-1)(2pi)/(n))/(2)))`
`=(1)/(2)(n-1-(sin((pi)/(n)))/(sin((pi)/(n)))(-1))=(n)/(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex nth root of unity, then underset(r=1)overset(n)(ar+b)omega^(r-1) is equal to

Prove that underset(r = 0) overset (n)(sum) 3^(r) ""^(n)C_(r) = 4^(n)

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

The value of underset(r=0)overset(10)sumr^(10)C_(r),3^(r).(-2)^(10-r) is -

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

Find the value underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

The number of positive zeros of the polynomial underset(j=0)overset(n)(Sigma)^n C_r(-1)^r x^r is