Home
Class 12
MATHS
Sum the series: sqrt(1+cos alpha)+sqrt(1...

Sum the series: `sqrt(1+cos alpha)+sqrt(1+cos 2alpha)+sqrt(1+cos 3alpha)` +.......to n terms, where `0ltalphaltpi`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt(2)(sin((nalpha)/(4)))/(sin((alpha)/(4)))cos[(n+1)(alpha)/(4)]`

`S=sqrt(1+cosalpha)+sqrt(1+cos 2alpha)+sqrt(1+cos3alpha)+........n` terms
`=sqrt(2cos^(2)""(alpha)/(2))+sqrt(2cos^(2)alpha)+sqrt(2cos^(2)(3alpha)/(2))+........n ` terms
`=sqrt(2)[cos(alpha)/(2)+cos alpha+cos(3alpha)/(2)+.......+"to" n "terms"]`
`sqrt(2)(sin((nalpha)/(4)))/(sin((alpha)/(4)))cos(((alpha)/(2))+((alpha)/(2))+(n-1)((alpha)/(2)))/(2)`
`=sqrt(2)((sin((n alpha)/(4)))/(4))/(sin((alpha)/(4)))cos[(n+1)(alpha)/(4)]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate cos alpha cos 2 alpha cos 3 alpha..........cos 999alpha , where alpha=(2pi)/(1999)

(cos2 x - cos2 alpha)/(cos x - cos alpha)

The sides of a triangle are sin alpha , cos alpha and sqrt( 1+ sin alpha cos alpha ) for some 0 lt alpha lt pi/2 then the greater angle of the triangle is

sqrt((1+ cos theta)/( 1- cos theta)) + sqrt((1- cos theta)/( 1 + cos theta )) ( 0 lt theta lt pi ) is

IF tan alpha = ( sin alpha - cos alpha )/( sin alpha + cos alpha) , then sin alpha + cos alpha is

IF sin ^(16) alpha = 1/5 then the value of (1) /(cos ^2 alpha) +(1)/( 1 + sin ^2 alpha) +(2)/(1+ sin ^4 alpha) + ( 4 )/( 1+ sin ^8 alpha) is equal to

if cos alpha + sin alpha = 3/4 , then sin ^6 alpha + cos ^6 alpha =

If cos alpha + cos beta = 1//2 and sin alpha+ sin beta = 1//3 , then