Home
Class 12
MATHS
Let a^(2)+b^(2)=a^(2)+beta^(2)=2. Then s...

Let `a^(2)+b^(2)=a^(2)+beta^(2)=2`. Then show that the maximum value of `S=(1-alpha)(a-b)+(1-alpha)(1-beta)` is 8.

Text Solution

Verified by Experts

Let `alpha=sqrt(2)cos theta, b=sqrt(2)sin theta`.
`alpha=sqrt(2)cos phi, beta=sqrt(2)sin phi`
`rArr S=2-2(sin(theta+pi//4))+sin(phi+pi//4)+2[cos(theta-phi)]`
Maximum value occurs when `theta=phi=5pi//4`
`rArr S_("max")=2[-1-1]+2=8`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Single)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.8|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation x^(2) + 2x + 8 = 0 the the value of (alpha)/(beta) + (beta)/(alpha) is ………….. .

If alpha and beta are the roots of the equation x^2 + 2x +8=0 then the value of (alpha)/(beta) + (beta)/(alpha) is ………………….. .

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

Given alpha,beta, respectively, the fifth and the fourth non-real roots of units, then find the value of (1+alpha)(1+beta)(1+alpha^2)(1+beta^2)(1+alpha^4)(1+beta^4)

If alpha and beta are the roots of the equation 3x^(2) - 5x + 2 = 0 , find the value of (i) (alpha)/(beta) + (beta)/(alpha) (ii) alpha-beta (iii) (alpha^(2))/(beta) + (beta^(2))/(alpha)

Let alpha , beta be two real numbers satisfying the following relations alpha^(2)+beta^(2)=5 , 3(alpha^(5)+beta^(5))=11(alpha^(3)+beta^(3)) Possible value of alpha + beta is

If alpha ,beta are the roots of the equation 2x^2+2(a+b)x+a^2+b^2=0 then find the equation whose roots are (alpha + beta)^2 and (alpha-beta)^2