Home
Class 12
MATHS
If A = sin^2x + cos^4 x, then for all re...

If `A = sin^2x + cos^4 x`, then for all real x :

A

`(3)/(4) le A le (13)/(16)`

B

`(3)/(4) le A le 1`

C

`(13)/(16) le A le 1`

D

`1 le A le 2`

Text Solution

Verified by Experts

The correct Answer is:
B

`A = sin ^(2) x + cos ^(4) x `
`= 1- cos ^(2) x + cos ^(4)x`
`= 1 - cos ^(2) x (1- cos ^(2)x)`
` = 1- cos^(2)x sin ^(2) x `
` = 1- ( sin ^(2) 2x)/( 4)`
Now, `0 le sin ^(2) 2 x le 1`
`rArr - (1)/(4) le - ( sin^(2) 2x )/(4) le 0`
`rArr (3)/(4) le 1 - ( sin ^(2)2x)/(4x) le 1 `
`rArr 3//4 le A le 1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Advanced Previous Year|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Numerical)|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

If sin^ 4 x/2+cos^4 x/3 =1/5 then

Solve sin 2x=4 cos x .

Let f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x) for some real number k. Determine(a) all real numbers k for which f(x) is constant for all values of x.

If cos x + cos^2 x=1 , then the value of sin ^4 x + sin ^6 x is equal to

Solve sin 2x+cos 4x=2 .

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

find all the possible triplets (a_(1), a_(2), a_(3)) such that a_(1)+a_(2) cos (2x)+a_(3) sin^(2) (x)=0 for all real x.

The maximum value of 4 sin^(2) x + 3 cos^(2) x + sin ""(x)/(2) + cos"" (x)/(2) is

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then