Home
Class 12
MATHS
sin^(10)x+cos^(10)x=29/16cos^4 2x...

`sin^(10)x+cos^(10)x=29/16cos^4 2x`

Text Solution

Verified by Experts

`sin^(10) x+cos^(10)x=29/16 cos^(4) 2x`
`rArr ((1- cos 2x)/2)^(5) + ((1+cos 2x)/2)^(5) =29/16 cos^(4) 2x`
Let `cos 2x=t`. Then
`((1-t)/2)^(5)+((1+t)/2)^(5) =29/16 t^(4)`
or `24 t^(4)-10 t^(2) -1=0`
or `(2t^(2) -1) (12 t^(2) +1) =0`
or `t^(2) =1/2`
or `cos^(2) 2x=1/2 =(1/sqrt(2))^(2)=("cos" pi/4)^(2)`
or `2x=n pi pm pi/4, n in Z`
or `x= (n pi)/2 pm pi/8, n in Z`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .

int (sin^(8) x - cos ^(8) x)/( 1 - 2 sin^(2) x cos^(2) x) dx is

Determine whether the following functions are even, odd or neither. (i) sin^(2) x-2cos^(2) x-cos x (ii) sin (cos(x)) (iii) cos(sin (x)) (iv) sin x+cos x

Prove that sin x=2^(10) sin((x)/(2^(10))) cos (x/2) cos (x/2^(2))......cos((x)/(2^(10))) .

Solve: 16^(sin^(2)x) +16^(cos^(2)x)=10 ,0lt=x<2pi