`sin^(10) x+cos^(10)x=29/16 cos^(4) 2x` `rArr ((1- cos 2x)/2)^(5) + ((1+cos 2x)/2)^(5) =29/16 cos^(4) 2x` Let `cos 2x=t`. Then `((1-t)/2)^(5)+((1+t)/2)^(5) =29/16 t^(4)` or `24 t^(4)-10 t^(2) -1=0` or `(2t^(2) -1) (12 t^(2) +1) =0` or `t^(2) =1/2` or `cos^(2) 2x=1/2 =(1/sqrt(2))^(2)=("cos" pi/4)^(2)` or `2x=n pi pm pi/4, n in Z` or `x= (n pi)/2 pm pi/8, n in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1
The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is
Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .
int (sin^(8) x - cos ^(8) x)/( 1 - 2 sin^(2) x cos^(2) x) dx is
Determine whether the following functions are even, odd or neither. (i) sin^(2) x-2cos^(2) x-cos x (ii) sin (cos(x)) (iii) cos(sin (x)) (iv) sin x+cos x
Prove that sin x=2^(10) sin((x)/(2^(10))) cos (x/2) cos (x/2^(2))......cos((x)/(2^(10))) .
Solve: 16^(sin^(2)x) +16^(cos^(2)x)=10 ,0lt=x<2pi
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)