Find the number of solution of `theta in [0,2pi]`
satisfying the equation `((log)_(sqrt(3))tantheta(sqrt((log)_(tantheta)3+(log)_(sqrt(3))3sqrt(3)=-1)`
Text Solution
Verified by Experts
`(log_(sqrt(3))tan theta)[sqrt((log_(sqrt(3))3)/(log_(sqrt(3))tan theta)+log_(e) (sqrt(3))^(3))]=-1` `(log_(sqrt(3))tan theta)[sqrt(2/(log_(sqrt(3))tan theta)+3)]=-1` Let `log_(sqrt(3))tan theta=y` `rArr ysqrt(2/y+3)=-1` `rArr sqrt(2/y+3) = (-1)/y` `rArr 2/y+3=1/y^(2)" "`(where `y lt 0`) `rArr y[3y^(2) +2y-1]=0` `rArr y(3y-1) (y+1)=0` `rArr y=-1" "( :' y" cannot be positive")` `rArr log_(sqrt(3))tan theta =-1` `rArr tan theta=1/sqrt(3)` `:. theta=pi/6 and (7pi)/6` Thus, there are two values of `theta` in `[0, 2pi]`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Find the general solution of tan theta=sqrt3
Solve sqrt(3)tan^(2)theta+(sqrt(3)-1)tantheta-1=0
Find the value of (log)_(2sqrt(3))1728.
Solve tan^2 theta -(sqrt3 +1)tantheta +sqrt3 =0
The number of integers satisfying the inequality log_(sqrt(0.9))log_(5)(sqrt(x^(2)+5+x))gt 0 is
Find the number of solutions of the following equations: 1. x^(-1/2)(log)_(0. 5)x=1, 2. x^2-4x+3-(log)_(2)x=0
Solve tan^(2) theta+(1-sqrt3) tan theta-sqrt3=0
Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3
Number of integers satisfying the inequality (log)_(1/2)|x-3|>-1 is.....
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)