Home
Class 12
MATHS
Prove that the equation 2s in x|x|+a has...

Prove that the equation `2s in x|x|+a` has not solution for `a in ((3sqrt(3)-pi)/3-oo)dot`

Text Solution

Verified by Experts

We have
`2 sin x=|x|+a`.
Consider graphs of `y=2 sin x` and `y=|x|`.

Equation `2 sin x=|x|+a` will have a solution so long as the line `y=|x|+a` intersects or at least touches the curve, `y=2 sin x`. In this case, we must have
`dy//dx=2 cos x=1=` Slope of the line
`rArr x=pi//3`.
Hence, the solution does not exist if `pi/3+a gt 2 "sin" pi/3`
`rArr a gt (3sqrt(3)-pi)/3`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Prove that the equation 2 sin x=|x|+a has no solution for a in ((3sqrt(3)-pi)/3, oo) .

Prove that the equation x^(log_(sqrtx^(2x)))=4 has no solution.

Find the general solutions of the equation sin x= (sqrt(3))/(2)

Consider the equaiton 2 + |x^(2) + 4x + 3|= m , m in R Set of all values of m so that the given equation have two solutions is Option 1: (3, oo) Option 2: (2,oo) Option 3: {2} uu (3,oo) Option 4: None of these

find the principal and general solutions of the equation cos x=(-sqrt(3))/(2)

Solve sqrt(x-1)>sqrt(3-x)dot

For x in (0,pi), the equation sinx+2 sin 2x-sin3x=3 has (A)infinitely many solutions (B)three solutions (C)one solution (D)no solution

Find the principal solution of the equation tan x =- (1)/(sqrt3).

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3

Find number of solution of the equation 2 sin x+5 sin^(2) x+8sin^(3)x+... oo=1 for x in [0, 2pi] .