`sin^(2) x+1/4 sin^(2) 3x= sin x sin^(2) 3x` or `sin^(2) x-sin x sin^(2) 3x+1/4 sin^(2) 3x=0` or `(sin x-1/2 sin^(2) 3x)^(2) +1/4 sin^(2) 3x (1- sin^(2) 3x)=0` or `(sin x-1/2 sin^(2) 3x)^(2) +1/4 sin^(2) 3x cos^(2) 3x=0` or `(sin x 1/2 sin^(2) 3x)^(2) +1/16 sin^(2) 6x =0` or `sin x-1/2 sin^(2) 3x=0` and `sin 6x=0` or `2 sin x=sin^(2) 3x and sin 6x =0` From `sin 6x=0, x=kpi//6, k in Z` From here, we choose those values which satisfy the equation `2 sin x=sin^(2) 3x`. Now, `sin^(2) 3 ((k pi)/6)=sin^(2) (kpi)/2={("1, if k is odd"),("0, if k is even"):}}`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|4 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve sin^2x +1/4sin^2 3x=sinxsin^2 3x
Solve: 2sin^2x+sin^2 2x=2
Solve sinx +sin2x +sin3x +sin4x =0
Solve 1+sinxsin^2(x/2)=0
Solve sin^(-1)x+sin^(-1)2x=pi/3dot
Solve: sinx + sin 5x = sin 3x
Solve: sin2x +sin6x -sin4x=0 .
Solve sin 2x=4 cos x .
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)